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Abstract. We present a new family of stabilized methods for the Stokes problem. The focus
of the paper is on the lowest order velocity-pressure pairs. While not LBB compliant, the simplicity
and the attractive computational properties make these pairs a popular choice in engineering prac-
tice. Our stabilization approach is motivated by terms that characterize the LBB “deficiency” of the
unstable spaces. The stabilized methods are defined by using these terms to modify the saddle-point
Lagrangian associated with the Stokes equations. The new stabilized methods offer a number of at-
tractive computational properties. In contrast to other stabilization procedures, they are parameter
free, do not require calculation of higher order derivatives or edge-based data structures, and always
lead to symmetric linear systems. Furthermore, the new methods are unconditionally stable, achieve
optimal accuracy with respect to solution regularity, and have simple and straightforward imple-
mentations. We present numerical results in two and three dimensions that showcase the excellent
stability and accuracy of the new methods.
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1. Introduction. Despite the fact that they violate the LBB stability condition,
low order velocity-pressure pairs remain a popular practical choice in mixed finite
element approximation of incompressible materials; see e.g. [29] and the references
cited therein. This popularity results from factors such as local mass conservation for
the lowest order conforming pair (piecewise linear, bilinear or trilinear C0 velocities
and piecewise constant pressures), simple and uniform data structures for the lowest
equal order pair (piecewise linear, bilinear or trilinear C0 velocities and pressures), and
algebraic problems with manageable sizes and small bandwidths in three dimensions
for both pairs. The latter is of paramount importance in engineering applications
where geometry resolution requires very fine meshes and higher order elements can
quickly lead to intractable algebraic problems in three space dimensions; see [27] for
an example setting.

To counteract the lack of LBB stability, low-order pairs are usually supplemented
by stabilization or postprocessing procedures that remove spurious pressure modes.
Unlike penalty methods (see [16, 22, 24, 25]) for which the goal is to uncouple the
pressure and velocity, stabilized methods aim to relax the continuity equation so as
to allow application of LBB incompatible spaces. Consistently stabilized methods (see
e.g., [1, 3, 5, 2, 15, 20, 21]) accomplish this by using the residual of the momentum
equation in the added stabilization terms. However, for low-order pairs, pressure and
velocity derivatives in this residual term either vanish or are poorly approximated,
causing difficulties in the application of consistent stabilization. One possible remedy
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is to reformulate the Stokes problem as a first-order system so that the momentum
residual contains only first-order terms [5]. This, of course, leads to more unknowns
and larger problems to solve. A second approach is to reconstruct the higher order
derivatives [23], or to replace the Laplace operator by a discrete operator [8]. In either
case, computation of a global L2 projection may be required.

It is possible to stabilize unstable velocity pressure pairs without using residuals.
One example, motivated by fractional step algorithms for time-dependent problems,
is the pressure gradient projection (PGP) method; see [6, 7, 13] and the related local
pressure gradient stabilization (LPS) method [4]. In both methods incompressibility
constraint is relaxed by using the difference between the discontinuous pressure gradi-
ent and its projection onto a piecewise polynomial space. The difference is that PGP
projects the pressure gradient onto the continuous velocity space and gives rise to a
globally coupled problem, while LPS assumes nested spaces and projects the gradient
onto an element patch space, which leads to local problems. However, it is clear that
both methods are not appropriate for pairs with constant pressure elements.

Another example of non-residual stabilization are the local and global pressure
jump formulations for the bilinear-constant pair [28, 29]. In these methods, the con-
straint is relaxed by using the jumps of the discontinuous pressure across element
interfaces. Application of pressure jump stabilization requires edge-based data struc-
tures, and in the case of the local formulation, subdivision of the mesh into patches.
Stabilization of the bilinear-constant pair is also considered in [26] where, instead of
pressure jumps, local projections onto 2× 2 macroelements are employed to relax the
continuity equation.

In this paper, we analyze a new, non-residual based, approach to the stabiliza-
tion of low-order mixed finite element discretizations of the Stokes equations, further
developing the idea of polynomial-pressure-projection-based stabilization that was
presented and studied computationally in [14]. The starting point for the analysis of
the method is a lower bound for a discrete negative semi-norm of the pressure gradient
which quantifies the LBB “deficiency” of an unstable pair. We show that the LBB
“deficiency” admits a representation in terms of operators with suitable range spaces.
This very general characterization opens up a possibility for stabilizing the mixed
Stokes equations in a manner that is independent of the space dimension and the
shape of the finite elements and also does not require choosing any mesh-dependent
parameters.

Our approach differs from existing residual and non-residual stabilization tech-
niques in several important aspects. Most notably, the new methods do not require
approximation of derivatives, specification of mesh-dependent parameters, or non-
standard data structures. Furthermore, our methods are unconditionally stable, opti-
mally accurate, and always lead to symmetric problems. Their implementation relies
on operators whose action can be evaluated locally at the element level using stan-
dard finite element techniques. As a result, an existing code can be easily modified
to handle the new stabilization procedures.

The paper is organized as follows. The remainder of this section introduces the
notation used throughout the paper. Section 2 reviews the mixed variational formula-
tion of the Stokes problem and a weaker form of the LBB stability condition that holds
for the spaces of interest to us. The new method is formulated in Section 3. Sections
4 and 5 deal with the stability and the error analysis, respectively, of the new method
while Section 6 is a succinct summary of some implementation details. The paper
concludes with Section 7 in which the results of a series of numerical experiments are
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collected.

1.1. Nomenclature. In what follows, Ω denotes a simply connected bounded
domain in Rd, d = 2, 3, with a Lipschitz continuous boundary Γ. Throughout the
paper, we employ the standard notation H l(Ω), ‖ · ‖l, (·, ·)l, l ≥ 0, for the Sobolev
spaces of all functions having square integrable derivatives up to order l on Ω, and
the standard Sobolev norm and inner product, respectively. When l = 0 we will
write L2(Ω) instead of H0(Ω) and drop the index from the inner product designation.
H l

0(Ω) will denote the closure of C∞0 (Ω) with respect to the norm ‖ · ‖l and L2
0(Ω)

will denote the space of all square integrable functions with vanishing mean. Spaces
consisting of vector-valued functions will be denoted in bold face. Throughout the
paper we use C to denote a generic positive constant whose value may change from
place to place but that remains independent of the mesh parameter h.

In this paper, we formulate methods for the Stokes equations that use pressure
and velocity finite element spaces defined with respect to the same partition Th of Ω
into finite elements Ωe. For instance, Ωe can be a hexahedron or a tetrahedron in
three dimensions, or a triangle or a quadrilateral in two dimensions. The boundary
∂Ωe of an element consists of faces γf . In two-dimensions, each γf is an edge; in
three dimensions, γf can be triangles or quadrilaterals. We assume that each face
is oriented by selecting a normal direction nf . The set of all interior faces will be
denoted by Γh. The norm

‖u‖Γh
=

( ∑
γf∈Γh

∫
γf

u2 dS

)1/2

(1.1)

will prove useful in the sequel.
Our main focus is on low-order velocity and pressure pairs. For simplicial ele-

ments, we consider the affine finite element families

P1 =
{
uh ∈ C0(Ω) | uh|Ωe

∈ P1(Ωe); ∀Ωe ∈ Th

}
,(1.2)

where P1(Ωe) is the space of linear polynomials on Ωe. For quadrilateral and hexa-
hedral elements we consider the space

Q1 =
{
uh ∈ C0(Ω) | uh|Ωe = ûh ◦ F−1; ûh ∈ Q1(Ω̂e)

}
,(1.3)

where Ω̂e is a reference element, F : Ω̂e 7→ Ωe is a bilinear or a trilinear mapping, and
Q1(Ωe) is the space of all polynomials on Ω̂e whose degree does not exceed 1 in each
coordinate direction. Note that unless Ωe is a parallelogram or a parallelepiped, uh

is not a piecewise polynomial function. For convenience, in what follows we will use
the symbol R1 to represent both kinds of finite element spaces. In accordance with
our earlier convention, vector-valued finite element spaces will be denoted in bold
face, e.g., R1. A well-known approximation result (see [18, p.217]) is that for every
u ∈ H2(Ω), there exists a function uh ∈ R1 such that

‖u− uh‖0 + h1/2‖u− uh‖Γh
+ h‖u− uh‖1 ≤ Ch2‖u‖2 .(1.4)

In addition to the C0 spaces R1, we will also need the piecewise constant space

R0 =
{
qh ∈ L2(Ω) | qh|Ωe

∈ P0(Ωe); ∀Ωe ∈ Th

}
,(1.5)

where P0(Ωe) is a constant polynomial space on Ωe. In (1.5), Th can be a simplicial
or a non-simplicial partition of Ω into finite elements. The space R0 has the following
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approximation property (see [18, p.102]): for every q ∈ H1(Ω), there exists qh ∈ R0

such that

‖q − qh‖0 ≤ Ch‖q‖1 .(1.6)

Finite element functions satisfy a number of useful inverse inequalities. In par-
ticular, we will use the standard inverse inequality

‖∇qh‖0 ≤ CIh
−1‖qh‖0(1.7)

that holds under some mild assumptions on Th for all functions in R1, and the inverse
inequality for R0 functions

‖[qh]‖Γh
≤ CIh

−1/2‖qh‖0, ∀ qh ∈ R0 ,(1.8)

where [qh] denotes the jump of qh ∈ R0.

2. Mixed finite element methods for the Stokes problem. We consider
the incompressible Stokes problem1

−λ∆u +∇p = f in Ω(2.1)
∇ · u = 0 in Ω(2.2)

along with the homogeneous velocity boundary condition

u = 0 on Γ .(2.3)

The mixed variational form of (2.1)–(2.3) is to seek (u, p) ∈ H1
0(Ω)×L2

0(Ω) such
that

Q(u, p;v, q) = F (v, q) ∀ (v, q) ∈ H1
0(Ω)× L2

0(Ω) ,(2.4)

where

F (v) =
∫

Ω

f · v dΩ ,

Q(u, p;v, q) = A(u,v) + B(v, p) + B(u, q) ,(2.5)

A(u,v) = λ

∫
Ω

∇u : ∇vdΩ , and B(v, p) = −
∫

Ω

p∇ · vdΩ .(2.6)

1We work with a nondimensional form of the Stokes problem. The dimensional form of the Stokes
equation has the form

−µ∆u + ∇p = ρf ,

where µ is the given (dynamic) viscosity, ρ the given fluid density, and f is a given body force per unit
mass. We choose a reference speed uref , length `ref , and density ρref which we use to respectively
nondimensionalize the velocity u, the position vector x, and the density ρ. We then arrive at (2.1)
by nondimensionalizing the pressure p using ρref u2

ref and ρf using ρref u2
ref /`ref . Then, in (2.1),

the nondimensional parameter λ = µ/(ρref `ref uref ) is the inverse of the “Reynolds number.”
Solely for the sake of keeping the presentation simple, we make the assumption that µ is constant.

For non-constant µ, the viscous term in the Stokes equations (2.1) is given by ∇ · (λ(∇u + (∇u)T ),
where λ is no longer constant, and, in (2.6), the first bilinear form is given by A(u,v) = 2

R
Ω λD(u) :

D(v)dΩ, where D(v) = 1
2
(∇v + (∇v)T ). Only minor modifications in the analyses are needed.
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The mixed variational equation (2.4) is the first-order optimality condition for the
saddle-point (u, p) of the Lagrangian functional

L(v, q) =
λ

2

∫
Ω

|∇v|2 dx−
∫

Ω

q∇ · v dx−
∫

Ω

f · v dx .(2.7)

To define a mixed finite element method for the Stokes problem (2.1)–(2.2), we
restrict (2.4) to a pair of finite elements subspaces Vh ⊂ H1

0(Ω) and Sh ⊂ L2
0(Ω).

Stable and accurate solution of (2.4), or equivalently, a stable and accurate approx-
imation of the saddle-point of (2.7), requires that Vh and Sh satisfy the discrete
inf-sup condition

sup
vh∈Vh, vh 6=0

B(ph,vh)
‖vh‖1

≥ γ‖ph‖0 , ∀ ph ∈ Sh(2.8)

with γ > 0 independent of h; see [18, 19].
In this paper, we will formulate stabilized mixed methods for the lowest equal

order C0 pair

Vh = R1 ∩H1
0(Ω) and Sh = R1 ∩ L2

0(Ω) ,(2.9)

and for the lowest order conforming pair

Vh = R1 ∩H1
0(Ω) and Sh = R0 ∩ L2

0(Ω) .(2.10)

For simplicial elements, (2.10) is the unstable linear-constant pair that provides a text-
book example for an over-constrained velocity space; see [19, p.23]. For quadrilateral
elements, it is the bilinear-constant pair that exhibits the notorious checkerboard
pressure mode. A common misconception is that once this mode is taken care of,
the bilinear-constant pair can be safely used. However, in [9] it is shown that this is
not the case and that, in fact, for this pair the constant γ in (2.8) is of order h. The
pair (2.9) are additional classical examples of unstable velocity-pressure pairs; see [19,
pp.21-25].

2.1. Weak inf-sup bounds. In this section, we show that the unstable velocity-
pressure pairs (2.9) and (2.10) satisfy a weaker form of the inf-sup condition (2.8).
This condition identifies terms that can be used to stabilize the mixed method. To
state the relevant form of the weaker inf-sup condition, we first review some results
of [17, 30, 31] specialized to (2.9) and (2.10).

Lemma 2.1. Let Vh and Sh be the spaces defined in (2.9). Then, there exist
positive constants C1 and C2 such that

sup
vh∈Vh

∫
Ω

ph∇ · vh dΩ

‖vh‖1
≥ C1‖ph‖0 − C2h‖∇ph‖0 ∀ ph ∈ Sh .(2.11)

Proof. By the definition of Sh, every ph ∈ Sh also belongs to L2
0(Ω). As a result,

there exists w ∈ H1
0(Ω) such that∫

Ω

ph∇ ·w dΩ ≥ C̃1‖ph‖0‖w‖1 .(2.12)
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Let wh denote the interpolant of w out of Vh. Then, from (1.4)

‖w −wh‖0 + h1/2‖w −wh‖Γh
≤ Ch‖w‖1 and ‖wh‖1 ≤ C‖w‖1 .(2.13)

Using (2.12), (2.13), and the fact that all elements of Sh are C0 functions,∣∣∫
Ω

ph∇ ·wh dΩ
∣∣

‖wh‖1
≥

∣∣∫
Ω

ph∇ ·wh dΩ
∣∣

C‖w‖1

=

∣∣∫
Ω

ph∇ ·
(
wh −w

)
dΩ +

∫
Ω

ph∇ ·w dΩ
∣∣

C‖w‖1

≥
∫
Ω

ph∇ ·w dΩ
C‖w‖1

−
∣∣∫

Ω
∇ph ·

(
wh −w

)
dΩ

∣∣
C‖w‖1

≥ C̃1

C
‖ph‖0 −

‖∇ph‖0‖w −wh‖0
C‖w‖0

≥ C1‖ph‖0 − C2h‖∇ph‖0 .

(2.14)

Then, since

sup
vh∈Vh, vh 6=0

∫
Ω

ph∇ · vh dΩ
‖vh‖1

≥
∣∣∫

Ω
ph∇ ·wh dΩ

∣∣
‖wh‖1

,(2.15)

the lemma is proved.
For the velocity-pressure pair (2.10), the discontinuity of the pressure space ne-

cessitates some minor modifications in the statement and proof of the weak inf-sup
condition.

Lemma 2.2. Let Vh and Sh be the spaces defined in (2.10). Then, there exist
positive constants C1 and C2 such that

sup
vh∈Vh

∫
Ω

ph∇ · vh dΩ

‖vh‖1
≥ C1‖ph‖0 − C2h

1/2‖[ph]‖Γh
∀ ph ∈ Sh .(2.16)

Proof. The pressure space Sh defined in (2.10) is also a subspace of L2
0(Ω). Thus,

there exists a w ∈ H1
0(Ω) and a wh ∈ Vh that satisfy (2.12) and (2.13). Proceeding

as in Lemma 2.1, we find that∣∣∫
Ω

ph∇ ·wh dΩ
∣∣

‖wh‖1
≥

∣∣∫
Ω

ph∇ ·wh dΩ
∣∣

C‖w‖1

≥
∫
Ω

ph∇ ·w dΩ
C‖w‖1

−
∣∣∫

Ω
ph∇ ·

(
wh −w

)
dΩ

∣∣
C‖w‖1

≥ C̃1

C
‖ph‖0 −

∣∣∫
Ω

ph∇ ·
(
wh −w

)
dΩ

∣∣
C‖w‖1

.

Using the fact that ph is constant on each element Ωe and integrating by parts gives∫
Ω

ph∇ ·
(
wh −w

)
dΩ =

∑
Ωe

∫
Ωe

ph∇ ·
(
wh −w

)
dΩ =

∑
Ωe

∫
∂Ωe

phn ·
(
wh −w

)
dS .
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Each interior face γf participates twice in this sum. Collecting the two integrals over
the same face and using (2.13) we obtain∑

Ωe

∫
∂Ωe

phn ·
(
wh −w

)
dS =

∑
γf

∫
γf

[ph]nf ·
(
wh −w

)
dS

≤

∑
γf

∫
γf

[ph]2 dS

1/2∑
γf

∫
γf

∣∣wh −w
∣∣2 dS

1/2

≤ Ch1/2‖[ph]‖Γh
‖w‖1

which proves that∣∣∫
Ω

ph∇ ·wh dΩ
∣∣

‖wh‖1
≥ C1‖ph‖0 − C2h

1/2‖[ph]‖Γh
∀ ph ∈ Sh .(2.17)

Then, using (2.15), the lemma is proved.
The terms

−h‖∇ph‖0 and − h1/2‖[ph]‖0(2.18)

appearing in (2.11) and (2.16) quantify the inf-sup “deficiency” of the unstable pairs
(2.9) and (2.10), respectively. This observation has been used implicitly in the design
of stabilized methods; additional terms are introduced to counterbalance (2.18). For
instance, consistently stabilized methods are based on the observation that adding a
properly weighted residual of (2.1) to the continuity equation (2.2) will contribute a
term that can offset −h‖∇ph‖0. The rest of the added terms are introduced to fulfill
the consistency requirement and may actually be destabilizing. As a result, residual
based stabilization must rely on carefully selected values of parameters to keep such
terms under control. Non-residual stabilization follows the same idea but introduces
balancing terms that do not involve residuals. For example, in [28], pressure jumps
are added directly to the continuity equation to help offset the destabilizing effect of
the −h1/2‖[ph]‖0 term, while Brezzi and Pitkaranta [11] use the first term in (2.18)
to obtain stabilized formulation for piecewise linear velocity-pressure pairs.

As a template for the design of stabilizing terms, (2.18) is insufficiently general.
One is always led to consider either the gradient or the jumps of the pressure. The
latter case also has the drawback of requiring face-based assembly and data struc-
tures. Below, we will derive an alternative characterization of the inf-sup “deficiency”
for low-order spaces that is formulated in terms of abstract operators. This character-
ization does not involve gradients or jumps, does not depend on the space dimension
or the type of the element shapes, and has no explicit dependence on mesh parame-
ters. As a result, it leads to new classes of stabilized mixed methods with attractive
computational properties. At this point it will suffice to specify only the ranges of
the abstract operators needed to characterize the inf-sup deficiency. As we proceed
to establish stability and prove convergence results, more assumptions will be added
as needed. The first operator

Π0 : L2(Ω) 7→ R0(2.19)

has a piecewise constant range; it will be used to stabilize (2.9). The second operator

Π1 : L2(Ω) 7→ R1(2.20)
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has a continuous range; it will be used to stabilize (2.10).
Lemma 2.3. There exists a positive constant C such that

Ch‖∇ph‖0 ≤ ‖ph −Π0p
h‖0 ∀ ph ∈ R1 .(2.21)

There exists another positive constant C such that

Ch1/2‖[ph]‖0 ≤ ‖ph −Π1p
h‖0 ∀ ph ∈ R0 .(2.22)

Proof. To prove (2.21), note that Π0p
h is constant on each element Ωe, and so

∇(Π0p
h)|Ωe

= 0. As a result, using the inverse inequality (1.7),

h2‖∇ph‖20 =
∑
Ωe

h2‖∇ph‖20,Ωe
=

∑
Ωe

h2‖∇(ph −Π0p
h)‖20,Ωe

≤
∑
Ωe

CI‖ph −Π0p
h‖20,Ωe

= CI‖ph −Π0p
h‖20 .

To prove (2.22), note that Π1p
h ∈ R1 ⊂ C0(Ω). Thus, [(Π1p

h)|γf
] = 0 on every

interior element face γf . Using the inverse inequality (1.8),

h‖[ph]‖2Γh
=

∑
γf

h‖[ph]‖20,γf
=

∑
γf

h‖[ph −Π1p
h]‖20,γf

= h‖[ph −Π1p
h]‖2Γh

≤ CI‖ph −Π1p
h‖0 .

Using (2.21) and (2.22), results of Lemmas 2.1 and 2.2 can be combined into one
statement. Let

Π =
{

Π0 if Sh is defined by (2.9)
Π1 if Sh is defined by (2.10) .

(2.23)

Corollary 2.4. Let Vh and Sh be the spaces defined in (2.9) or (2.10). Then,
there exist positive constants C1 and C2 whose value is independent of h and such
that

sup
vh∈Vh

∫
Ω

ph∇ · vh dΩ

‖vh‖1
≥ C1‖ph‖0 − C2‖(I −Π)ph‖0 ∀ ph ∈ Sh .(2.24)

We note that Π0 and Π1 are complementary in the sense that Π0 acts on C0 pressures
and has a discontinuous range and Π1 acts on discontinuous pressures and has a C0

range. Note that besides the range assumption, Corollary 2.4 does not require any
additional hypotheses about Π.

3. The new stabilized mixed methods. We will stabilize (2.4) by using

1
2
‖(I −Π)p‖20(3.1)

to compensate for the inf-sup deficiency of the low-order finite element pairs in (2.9)
and (2.10). We add this term to (2.7) to obtain the following modified Lagrangian
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functional:2

L̃m(v, q)=
λ

2

∫
Ω

|∇v|2 dΩ−
∫

Ω

q∇ · v dΩ−
∫

Ω

f · v dΩ− 1
2
‖(I −Π)q‖20 .(3.2)

The saddle-point (ũ, p̃) of (3.2) satisfies the variational problem

A(ũ,v) + B(p̃,v) = F (v) ∀v ∈ H1
0(Ω)(3.3)

B(q, ũ)−G(p̃, q) = 0 ∀ q ∈ L2
0(Ω) ,(3.4)

where

G(p̃, q) =
∫

Ω

(p̃−Πp̃)(q −Πq) dΩ .(3.5)

Equivalently, we can write (3.3)–(3.4) in the following form: seek (ũ, p̃) ∈ H1
0(Ω) ×

L2
0(Ω) such that

Q̃(ũ, p̃;v, q) = F (v, q) ∀ (v, q) ∈ H1
0(Ω)× L2

0(Ω) ,(3.6)

where

Q̃(u, p;v, q) = A(u,v)+B(p,v)+B(q,u)−G(p, q) .(3.7)

The stabilized method is obtained by a restriction of (3.6) or, equivalently, of (3.3)–
(3.4) to the finite element spaces (2.9) or (2.10). Thus, we seek (uh, ph) in Vh × Sh,
such that

Q̃(uh, ph;vh, qh) = F (vh, qh) ∀ (vh, qh) ∈ Vh × Sh .(3.8)

The stabilization term (3.1) is not a residual of the Stokes equations. As a result,
(3.8) is not a consistent finite element formulation of the Stokes equations. However,
as noted earlier, for low-order elements, formally consistent stabilized methods [15,
20, 21] also loose their consistency, and so lack of consistency in our method should
not be viewed as a serious flaw.

3.1. Comparison with the penalty method. The last term in (3.2) resembles
the term that appears in the penalized Lagrangian

Lε(v, q) =
λ

2

∫
Ω

|∇v|2 dΩ−
∫

Ω

q∇ · v dΩ−
∫

Ω

f · v dΩ− ε

2
‖q‖20 .(3.9)

However, the method (3.8) resulting from (3.2) is fundamentally different from a
classical penalty approach based on (3.9). Taking first variations of (3.9) with respect
to v and q gives the variational equation: seek (uε, pε) in H1

0(Ω)× L2
0(Ω) such that

A(uε,v) + B(pε,v) = F (v) ∀v ∈ H1
0(Ω)(3.10)

B(q,uε)− εD(pε, q) = 0 ∀ q ∈ L2
0(Ω) ,(3.11)

2The modified Lagrangian (3.2) is in nondimensional form; its dimensional counterpart has the
form eLm(v, q)=

µ

2

Z
Ω
|∇v|2 dΩ−

Z
Ω

q∇ · v dΩ−
Z
Ω

ρf · v dΩ −
α

2
‖(I − Π)q‖20 ,

where α = (ρref uref `ref )−1 = λ/µ. It is important to note that α is not a stabilization parameter,
but is merely a parameter introduced to make the dimensional form of the modified Lagrangian
dimensionally correct; this observation is made obvious by examining the nondimensional form (3.2)
in which the stabilization term − 1

2
‖(I − Π)p‖20 is parameter free.
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where D(·, ·) is the L2 inner product. The second equation can be used to eliminate
the pressure and to obtain an equation in terms of uε only:

A(uε,v) +
1
ε

∫
Ω

(∇ · uε)(∇ · v) dΩ = F (v) ∀v ∈ H1
0(Ω) .(3.12)

Restriction of (3.12) to a discrete velocity space Vh leads to the classical penalty
method. Alternatively, one can discretize (3.10)–(3.11), eliminate the discrete pres-
sure from the linear system, and obtain another problem in terms of the discrete ve-
locity only. Regardless of which version of the penalty method is used, i.e., eliminate
and then discretize, or discretize and then eliminate, the ensuing penalty problem
continues to require a discrete inf-sup compatibility condition. For instance, well-
posedness of the eliminate and discretize method is subject to an inf-sup condition
between Vh and an implicit pressure space defined by εpε = −∇ · uε; see [24, 25]. A
classical example of a failure in this method is the locking phenomena that occurs for
linear velocities. In this case the implicit pair (Vh, Sh) is equivalent to the unstable
P1-P0 element.

Because the penalty method still requires compatible finite element spaces, it is
not a stabilization procedure. Rather, it is a solution method that allows one to solve
the mixed problem more easily by uncoupling the velocity and pressure. In contrast
to (3.10)–(3.11), in (3.8) we seek (uh, ph) ∈ Vh × Sh such that

A(uh,vh) + B(ph,vh) = F (vh) ∀vh ∈ Vh(3.13)
B(qh,uh)−G(ph, qh) = 0 ∀ q ∈ Sh .(3.14)

In addition to the absence of a penalty parameter, another difference between (3.13)–
(3.14) and the penalized problem (3.10)–(3.11) is that G(·, ·) vanishes for all pressures
in the range of Π. As a result, this variable cannot be eliminated from (3.14). Of
course, the main difference is that, as we shall see in the next section, (3.13)–(3.14)
is stable for the low-order pairs in (2.9) and (2.10), while (3.10)–(3.11) may fail as
ε → 0.

The penalty method can be extended to a stabilization procedure by using the
stronger H1-seminorm penalty ε/2‖∇q‖20 instead of the classical L2 penalty ε/2‖q‖20.
This leads to a stabilized finite element method proposed by Brezzi and Pitkaranta
[11]. The bound (2.21) in Lemma 2.3 implies that for R1 pressures their method and
(3.8) have similar stability properties. However, (3.8) can be extended to constant
pressures, while the method of [11] cannot.

4. Stability. To show that (3.8) is a stable variational problem, we have to
additionally assume that Π is continuous as an operator L2(Ω) 7→ L2(Ω):

‖Πp‖0 ≤ C‖p‖0 ∀ p ∈ L2(Ω) .(4.1)

Using (4.1), it is easy to show that Q̃ is continuous, i.e.,

Q̃(uh, ph;vh, qh) ≤ C
(
‖uh‖1 + ‖ph‖0

) (
‖vh‖1 + ‖qh‖0

)
(4.2)

for all (uh, ph) and (vh, qh) in Vh×Sh. We now prove the stability of the variational
problem (3.8).

Theorem 4.1. Let (Vh, Sh) be one of the pairs (2.9) or (2.10). Then, there
exists a positive constant C whose value is independent of h such that

sup
(vh,qh)∈Vh×Sh

Q̃(uh, ph;vh, qh)
‖vh‖1 + ‖qh‖0

≥ C
(
‖uh‖1 + ‖ph‖0

)
∀ (uh, ph) ∈ Vh × Sh .(4.3)
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Proof. We will construct a pair (v̂h, q̂h), such that

Q̃(uh, ph; v̂h, q̂h) ≥ C
(
‖uh‖1 + ‖ph‖0

) (
‖v̂h‖1 + ‖q̂h‖0

)
.

Setting (vh, qh) = (uh,−ph) yields

Q̃(uh, ph;uh,−ph) = λ‖∇uh‖20 + ‖ (I −Π) ph‖20 .

For a given arbitrary but fixed pressure ph ∈ Sh, let w and wh be the functions that
satisfy (2.12) and (2.13). Assume that wh is normalized so that

‖∇wh‖0 =
√

λ ‖ph‖0 .(4.4)

From (2.14) and (2.21) if Π = Π0 and (2.17) and (2.22) if Π = Π1 we have that∫
Ω

ph∇ ·wh dΩ ≥ C1‖ph‖20 − C2‖ (I −Π) ph‖0‖ph‖0 .

Setting (vh, qh) = (−αwh, 0), where α is a real, positive parameter, together with the
last inequality and (4.4) yields

Q̃(uh, ph;−αwh, 0) = −α

∫
Ω

∇uh · ∇wh dΩ + α

∫
Ω

ph∇ ·wh dΩ

≥ −α‖∇uh‖0‖∇wh‖0 + α
(
C1‖ph‖20 − C2‖(I −Π)ph‖0‖ph‖0

)
≥ −α

√
λ‖∇uh‖0‖ph‖0 + α

(
C1‖ph‖20 − C2‖(I −Π)ph‖0‖ph‖0

)
.

As a result, for (vh, qh) = (uh − αwh,−ph), we have the bound

Q̃(uh, ph;uh − αwh,−ph) ≥ ‖∇uh‖20 + ‖ (I −Π) ph‖20 + αC1‖ph‖20

−α
√

λ‖∇uh‖0‖ph‖0 − αC2‖ (I −Π) ph‖0‖ph‖0 .

Using the ε-inequality with ε = C1/2, we have that

√
λ‖∇uh‖0‖ph‖0 ≤

λ

C1
‖∇uh‖20 +

C1

4
‖ph‖20

and

C2‖ (I −Π) ph‖0‖ph‖0 ≤
C2

2

C1
‖ (I −Π) ph‖20 +

C1

4
‖ph‖20 .

In combination with the earlier lower bounds, these inequalities lead to

Q̃(uh, ph;uh − αwh,−ph) ≥

λ

(
1− α

C1

)
‖∇uh‖20 +

αC1

2
‖ph‖20 +

(
1− αC2

2

C1

)
‖ (I −Π) ph‖20 .

Choosing

α̂ = min
{

C1

2
,

C1

2C2
2

}
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guarantees that (
1− α̂

C1

)
≥ 1

2
and

(
1− α̂C2

2

C1

)
≥ 1

2
.

We now set

v̂h = uh − α̂wh and q̂h = −ph .

It is then easy to see that

Q̃(uh, ph; v̂h, q̂h) ≥ 1
2

(
λ‖∇uh‖20 + α̂C1‖ph‖20 + ‖ (I −Π) ph‖20

)
≥ 1

6

(√
λ‖∇uh‖0 +

√
α̂C1‖ph‖0 + ‖ (I −Π) ph‖0

)2

≥ C
(
‖∇uh‖0 + ‖ph‖0

)2
,

where the last bound follows from (a+ b+ c)2 ≤ 3(a2 + b2 + c2) . Finally, (4.4) implies
that

‖∇v̂h‖0 + ‖q̂h‖0 = ‖∇(uh − α̂wh)‖0 + ‖ph‖0 ≤ ‖∇uh‖0 + α̂‖∇wh‖0 + ‖ph‖0

≤ ‖∇uh‖0 + α̂
√

λ‖ph‖0 + ‖ph‖0 ≤ C
(
‖∇uh‖0 + ‖ph‖0

)
,

i.e., (v̂h, q̂h) is bounded by (uh, ph) in the norm of H1
0(Ω) × L2(Ω). This proves the

theorem.
Together, (4.2) and (4.3) imply that (3.8) is a stable variational problem.
Remark 1. Because Q̃ is symmetric, (4.3) is sufficient to establish weak coercivity

of this form.
Remark 2. The stabilized problem (3.8) is well-posed if (4.2) and (4.3) hold, i.e.,

if the bilinear form Q̃ is continuous and weakly coercive. From the proof of Theorem
4.1, it is clear that weak coercivity only depends on Π having the appropriate range.
The continuity of Q̃, on the other hand, is impossible without assuming that Π itself
is continuous.

5. Error estimates. To prove convergence of stabilized solutions, the properties
of Π must be augmented by an approximation hypothesis. We will assume that

‖(I −Π)p‖0 ≤ Ch‖p‖1 .(5.1)

for every p ∈ H1(Ω).
Theorem 5.1. Let (Vh, Sh) denote one of the spaces (2.9) or (2.10), let (u, p) be

the solution of the Stokes problem (2.4), and let (uh, ph) ∈ Vh×Sh solve the stabilized
mixed problem (3.8), where the operator Π defined in (2.23) satisfies (4.1). Then,

‖u− uh‖1 + ‖p− ph‖0

≤ C
(

inf
qh∈Sh

‖p− qh‖0 + inf
vh∈Vh

‖u− vh‖1 + ‖(I −Π)p‖0
)
.

(5.2)
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Proof. Since (Vh, Sh) is a subspace of H1
0(Ω)× L2

0(Ω), we have from (2.4) that

A(u,vh) + B(p,vh) = F (vh) ∀vh ∈ Vh

B(qh,u) = 0 ∀ qh ∈ Sh .

Subtracting these equations from (3.13)–(3.14) yields

A(uh − u,vh) + B(ph − p,vh) = 0 ∀vh ∈ Vh

B(qh,uh − u) = G(ph, q) ∀ qh ∈ Sh ,

or, equivalently,

Q̃(uh − u, ph − p;vh, qh) = G(p, qh) ∀ (vh, qh) ∈ Vh × Sh .(5.3)

Let (wh, rh) be an arbitrary pair in Vh × Sh. We estimate the discrete error

‖uh −wh‖1 + ‖ph − rh‖0
using the weak coercivity bound (4.3) and the error “orthogonality” (5.3):

C
(
‖uh −wh‖1 + ‖ph − rh‖0

)
≤ sup

(vh,qh)∈Vh×Sh

Q̃(uh −wh, ph − rh;vh, qh)
‖vh‖1 + ‖qh‖0

= sup
(vh,qh)∈Vh×Sh

Q̃(uh − u, ph − p;vh, qh) + Q̃(u−wh, p− rh;vh, qh)
‖vh‖1 + ‖qh‖0

= sup
(vh,qh)∈Vh×Sh

G(p, qh) + Q̃(u−wh, p− rh;vh, qh)
‖vh‖1 + ‖qh‖0

.

From (4.2) we have that

Q̃(u−wh, p− rh;vh, qh) ≤ C
(
‖u−wh‖1 + ‖p− rh‖0

) (
‖vh‖1 + ‖qh‖0

)
and from (4.1) we have that

G(p, qh) ≤ CG(p, p)1/2‖qh‖0 .

As a result, there exists a positive constant C such that

C
(
‖uh −wh‖1 + ‖ph − rh‖0

)
≤ sup

(vh,qh)∈Vh×Sh

G(p, p)1/2‖qh‖0 +
(
‖u−wh‖1 + ‖p− rh‖0

) (
‖vh‖1 + ‖qh‖0

)
‖vh‖1 + ‖qh‖0

≤ G(p, p)1/2 +
(
‖u−wh‖1 + ‖p− rh‖0

)
=

(
‖u−wh‖1 + ‖p− rh‖0

)
+ ‖(I −Π)p‖0 .

To complete the proof, we use the triangle inequality to obtain

‖u− uh‖1 + ‖p− ph‖0

≤
(
‖u−wh‖1 + ‖p− rh‖0

)
+

(
‖uh −wh‖1 + ‖ph − rh‖0

)
≤ C

(
‖u−wh‖1 + ‖p− rh‖0 + ‖(I −Π)p‖0

)
,
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and then take the infimum over wh ∈ Vh and rh ∈ Sh.
Together with the assumption (5.1) this theorem can be used to show that solu-

tions of (3.8) converge optimally with respect to the solution regularity.
Corollary 5.2. Assume that (u, p) ∈ H1

0(Ω) ∩H2(Ω) × L2
0(Ω) ∩H1(Ω) solves

the Stokes problem (2.1)–(2.2) and that (uh, ph) is the solution of the stabilized mixed
problem (3.8), where the operator Π defined in (2.23) satisfies (4.1) and (5.1). Then,

‖u− uh‖1 + ‖p− ph‖0 ≤ Ch (‖u‖2 + ‖p‖1) .(5.4)

Proof. The assertion follows immediately from (5.2) using (1.4), (1.6), and (5.1).

6. Implementation. Among the attractive features of our stabilization ap-
proach is the great flexibility in the definition of the stabilization term (3.1). The
main prerequisite to achieve stabilization of the mixed method with the low-order
finite element pairs (2.9) and (2.10) is to choose a Π with the appropriate range.
The simplest way to accomplish this is to use standard finite element projection or
interpolation operators. Then, the remaining assumptions about Π are easily verified.

From a practical viewpoint the main factors in the choice of Π are simplicity and
locality, i.e., computation of its action must be done at the element level using only
standard nodal data structures. With this in mind, a suitable choice of Π0 to stabilize
the lowest equal order pair (2.9) is a local L2 projection operator. Given a function
q ∈ L2(Ω) we define Π0 : L2(Ω) 7→ R0 by Π0q = qh ∈ R0 if and only if∫

Ωe

(Π0q − q) dΩe = 0 ∀Ωe ∈ Th .(6.1)

It is easy to see that

Π0q|Ωe
=

1
V (Ωe)

∫
Ωe

q dΩe

is the element average of q and that Π0 satisfies both assumptions (4.1) and (5.1); see
[18, p.102].

A suitable choice of Π1 to stabilize the lowest order conforming pair (2.10) is a
Clement-like interpolant; see [18, p.110]. Instead of using a projection onto a patch
of elements that share the same node we choose to define our interpolant by using a
projection onto the dual (or complementary) volume associated with each node. For
piecewise constant pressures this choice leads to a particularly simple formula for the
action of Π1 that does not require explicit construction of a dual cell. Specifically,
we define Π1 : L2(Ω) 7→ R1 as follows. For a given node Ni in Th, let Ω̂i denote its
dual volume. Given a function q ∈ L2(Ω), let qi be the constant function on Ω̂i that
minimizes the functional

Ji(q) =
1
2

∫
bΩi

(qi − q)2 dΩ ;(6.2)

then set

Π1q =
Nnodes∑

i=1

qiNi(x) ∈ R1 ,(6.3)
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where Ni denotes the nodal basis of R1 and Nnodes is the number of nodes in Th. The
action of the operator defined in (6.3) can be computed locally at the element level
and has the same properties as the usual Clement interpolant, i.e., (4.1) and (5.1) are
satisfied. For q = qh ∈ R0, the functional in (6.2) further simplifies to

Ji(qh) =
∑

Ωe∩Ωi 6=0

Vi(Ωe)(qi − qh
e )2,

where qh
e is the constant value of qh on Ωe and Vi(Ωe) is the volume fraction of the

element Ωe that belongs to the dual cell Ω̂i associated with node Ni. For constant
pressures, we can choose

Vi(Ωe) = V (Ωe)/ne ,

where ne is the number of nodes in Ωe. Minimization of Ji then yields the formula

qi =

∑
Ωe∈Ωi

Vi(Ωe)qh
e∑

Ωe∈Ωi
Vi(Ωe)

=
∑

Ωe∈Ωi

dieq
h
e ,

i.e., the nodal values of Π1q
h are area weighted averages of the surrounding constant

pressure values of qh.
The stabilized mixed problem gives rise to a linear system of algebraic equations

with a matrix that has the form [
A BT

B −G

]
.(6.4)

The matrices A and B are assembled in the usual manner from the bilinear forms
A(·, ·) and B(·, ·), respectively, and G is a symmetric, semidefinite matrix generated
at the element level from G(·, ·). The form of this matrix depends on the particular
operator Π employed in the stabilization. However, computation of G is completely
local and can be accomplished by augmenting the standard nodal assembly process
by a few simple calculations. For example, the only information needed to compute
G in the case of Π1 is the area of each element. This information should be readily
available during the standard assembly process; moreover, calculation of G is simple
in comparison to the calculations required to determine A and B.

It is also easy to see that G is a sparse matrix. In the case of Π = Π0, its
sparsity pattern is the same as for the standard nodal R1 pressure mass matrix. In
the case of Π = Π1, the original mass matrix associated with piecewise constant
pressures is diagonal while G is not. Nevertheless, the important point is that the
action of (I − Π) in both cases is obtained by multiplication of pressure degrees of
freedom by a sparse matrix rather than by an inversion of a mass matrix as occurs in
determining L2 projections. As a result, in the context of iterative solution methods,
our stabilization method is very efficient as it only requires one sparse matrix-vector
multiply per iteration.

7. Numerical examples. In this section, we report on some numerical results
obtained using the stabilized method (3.8). The main goal of these experiments is to
verify the convergence rates of (5.2) for the low-order pairs (2.9) and (2.10) in two
and three space dimensions. For each pair of spaces, we consider both simplicial and
nonsimplicial partitions Th of the computational domain into finite elements. Figure



16 P. B. BOCHEV, C. R. DOHRMANN, M. D. GUNZBURGER

Fig. 7.1. A sequence of refined non-uniform quadrilateral grids.

7.1 shows an example of a non-simplicial sequence of grids used for a convergence
study in two dimensions. The following error norms are used for the investigation of
convergence rates:

eh
uL2

= ‖uh − u‖0 =

√√√√ d∑
i=1

∫
Ω

(uh
i − ui)2dΩ(7.1)

eh
uH1

= ‖uh − u‖1 =

√√√√ d∑
i=1

∫
Ω

∇(uh
i − ui) · ∇(uh

i − ui)dΩ(7.2)

eh
pL2

= ‖ph − p‖0 =

√∫
Ω

(ph − p)2dΩ ,(7.3)

where d denotes the spatial dimension, ui, i = 1, . . . , d, denote the components of the
vector u, and (uh, ph) denotes the stabilized finite element approximation of the exact
solution (u, p). To estimate convergence rates, we select a pair of smooth functions
(u, p), with u solenoidal and p having zero mean, and evaluate the Stokes equations
to generate the source term f and the boundary data. This synthetic data is then
used by (3.8) to approximate the smooth exact solution on a sequence of grids.

The first example is for a unit square with3 λ = 1 and the smooth exact solution

u1 = x + x2 − 2xy + x3 − 3xy2 + x2y(7.4)
u2 = −y − 2xy + y2 − 3x2y + y3 − xy2(7.5)
p = xy + x + y + x3y2 − 4/3 .(7.6)

The values of u on the boundary of the square are constrained to those given by (7.4)
and (7.5). To remove the constant pressure mode from the numerical solution, the
constraint ∫

Ω

p(x)dΩ = 0(7.7)

is also imposed. Results for stabilized triangular elements P1-P1 and P1-P0 and sta-
bilized quadrilateral elements Q1-Q1 and Q1-P0 are shown in Figure 7.2. The eh

uH1

errors for the continuous pressure elements (P1-P1 and Q1-Q1) and the discontinuous

3The implementation of the new stabilized method for non-constant viscosity is straightforward
by using, e.g., viscosity values at quadrature points.
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Fig. 7.2. Errors for the first two-dimensional example (structured meshes).

Table 7.1
Solution errors for triangular stabilized elements normalized with respect to results for the stable

MINI element.

P1-P1 P1-P0

1/h eh
uL2

eh
uH1

eh
pL2

ediv eh
uL2

eh
uH1

eh
pL2

ediv

8 0.892 0.985 0.588 0.976 1.009 0.986 0.807 0.823
16 0.890 0.996 0.583 0.976 1.114 0.997 1.201 0.826
24 0.890 0.999 0.574 0.976 1.155 1.000 1.552 0.827
32 0.889 1.000 0.565 0.976 1.176 1.001 1.872 0.827
40 0.889 1.001 0.556 0.976 1.189 1.001 2.167 0.828
48 0.889 1.001 0.549 0.976 1.198 1.002 2.442 0.828
56 0.889 1.001 0.542 0.976 1.204 1.002 2.698 0.828

pressure elements (P1-P0 and Q1-P0) are nearly identical. Although not predicted by
theory, the eh

pL2
line segment slopes for the continuous pressure elements exceed those

of the discontinuous pressure elements. In all cases, the theoretical convergence rates
are confirmed.

For purposes of comparison, Table 7.1 shows the P1-P1 and P1-P0 results of
Figures 7.2 normalized with respect to those of the stable MINI element. Also shown
in the table are the normalized values of the maximum error in the divergence within
an element as defined by

ediv = max
e

∣∣∣∣∫
Γe

u · n dΓe

∣∣∣∣ ,(7.8)

where Γe is the boundary of element e and n is the unit outward normal of Γe. The
normalized maximum errors in the divergence are close to the stable MINI element
for both the P1-P1 and P1-P0 elements. The higher normalized values of eh

pL2
for

the P1-P0 elements are consistent with previous comments regarding continuous and
discontinuous pressure elements.

The second example uses the same exact solution, but now the square domain
has three circular cutouts as shown in Figure 7.1. Note that it is necessary to adjust
the constant value of 4/3 in (7.6) to satisfy (7.7). Meshes of triangles were obtained
from the quadrilateral meshes by splitting each quadrilateral into two triangles. Plots
of the error norms for the different element types are shown in Figure 7.3. In this
figure, he = 1/

√
Ne where Ne is the number of quadrilateral elements in the mesh.

As expected, the error norms become smaller as the meshes are refined.
The final example is for a unit cube with λ = 1 and the smooth exact solution

u1 = x + x2 + xy + x3y(7.9)
u2 = y + xy + y2 + x2y2(7.10)
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Fig. 7.3. Errors for the second two-dimensional example (unstructured meshes).
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Fig. 7.4. Errors for the three-dimensional example.

u3 = −2z − 3xz − 3yz − 5x2yz(7.11)
p = xyz + x3y3z − 5/32 .(7.12)

The hexahedral meshes have (1/h)3 elements whereas the tetrahedral meshes have
6(1/h)3 elements. Plots of the error norms versus element length are shown in Fig-
ure 7.4. As was the case for the two-dimensional examples, the theoretical convergence
rates are confirmed. Again, the eh

pL2
line segment slopes for the continuous pressure

elements are larger than those for the discontinuous pressure elements.
For further examples and numerical studies, we refer to [14].

8. Conclusions. We have formulated a new approach to stabilization of low
order velocity-pressure pairs for the incompressible Stokes equations. Central to our
approach is the characterization of the LBB deficiency of the unstable pairs in terms of
suitable operators, and their subsequent application in the formulation of a stabilized
mixed variational equation. This characterization remains valid for a broad range
of operators which makes our stabilization technique extremely flexible and leads to
stabilized mixed methods with attractive computational properties. Most notably,
our methods do not require selection of mesh dependent stabilization parameters,
retain the symmetry of the original equations, and can be implemented at the ele-
ment level with minimal additional cost. Numerical examples presented in this paper
demonstrate the excellent stability and accuracy properties of the new methods.
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